

Whoa!



## Sym-metros

The word Symmetry comes
Greek words: sym meaning metros meaning Measure. I.


Measure

- That,which has symmetry si, measurements
- Symmetry is an important component of Art and what we as humans call beauty.
- Human Beings are programmed to look for symmetry. Babies quickly recognize the bilateral symmetry of a mothers face.


## Use of SYMMETRY

7

Detect whether a | Predict and understand |
| :---: |
| whether a molecular |
| molecular structure will be |
| optical active or have |
| dipole moments |
| structure will be IR or Raman |
| Spectroscopy active |

Form molecular orbitals

| Predict and understand |
| :--- |
| Which molecular orbital |
| transitions will be UV |
| visible active |

In Chemistry SYMMETRY is a powerful mathematical tool for understanding structure and properties of molecules
$\}_{0}^{2 x^{2}}$ How do we determine Molecular Symmetry? Sometimes the answer can be obtained simply.
What has a higher relative symmetry, a sphere, a cube or a parallelbiped (rectangular box)?


## COMPARISON OF RELATIVE SYMMETRY SPHERE



## CUBE



BUT ANGLES OTHER THAN $90^{\circ}$ RESULTS IN DISTINGUISHABLE REPRESENTATIONS

## PARALLELBIPED

 DISTINGUISHABLE REPRESENTATIONS

$\xrightarrow{\text { rotate } 90^{\circ} \text { around } z}$


## IMPORTANT TERMS

transformation

## SYMMETRY

Invariance to transformation (Object appears unchanged)

## SYMMETRY ELEMENT

Feature that permits

## SYMMETRY ELEMENT

Operation that transforms an object )

## Point group

Collection
Symmetry elements
operations

## G JABAV IDENTITY

Doing nothing

IDENTITY - E
No operation or operation bringing back original molecule
eg. $\mathrm{H}_{2} \mathrm{O}$ on $360^{\circ}$ rotation $D$ N

- All molecules have identical structure called identity
- $C_{n}^{n}=E, \sigma^{2}=E, i^{2}=E, S_{n}^{k}=E(k$ even $), S_{n}^{2 k}=E(k$ odd)

The Identity Operation (E)

- The identity operation is the simplest of all -- do nothing. It may seem pointless to have a symmetry operation that consists of doing nothing, but it is very important. All objects (and therefore all molecules) at the very least have the identity element. There are many molecules that have no other symmetry.
- the following molecule contain no other symmetry other than identity:
- CHFCIBr


## Proper Axis of symmetry



## Proper axis of symmetry Cn



The rotation operations (both proper and improper) occur with respect to line called an axis of rotation.
$n=360 \%$
$\theta=$ minimum angle of
rotation to get
equivalent
orientation

- If the resulting configuration is indistinguishable from the original, we say there exists an $n$-fold proper rotation axis (or $\mathrm{C}_{\mathrm{n}}$ axis) in the molecule.
- In symmetry
- Rotation -> anti clockwise = $C_{n}{ }^{k}$
- IFclogkwise $=\mathrm{C}_{\mathrm{n}}{ }^{-\mathrm{k}}$

Each of the following molecules contains one or more proper axis:

- The water molecule contains a C2 axis
- Ethane contains both C2 and * C3 axes



## Axis of symmetry



White Board

## G L JADAV


$\underbrace{}_{0}$

## $G$ AD

$\leftrightarrow \overrightarrow{\mathbf{A}^{*}}$

- $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{-2}$
- $\left[\operatorname{Pt}(C 1)_{4}\right]^{-2}$
- Four fold axis of symmetry passing through Ni and Pt and Perpendicular to Plane
- Angle of rotation $=90^{\circ}$ and $C_{4}$
- Benzene
- $C_{6} \theta=60$, One $C_{6}$ and two $C_{2}$
$\underbrace{}_{0}$


## G L JADAV




## Selection of Principle axis



Axis with highest fold symme
$\mathrm{BF}_{3}$
3 two fold \& 1 three fold Thus 3 fold axis C3 is principle axis


More than one axis of same order then axis passing through maximum number of atoms is principal axis


## Some important points

$$
C_{\infty} \text { axis } \quad C_{2} \rightarrow C_{2}^{\prime}, \theta=180
$$

Infinite fold symmetry
e.g. $\mathrm{HCl}, \mathrm{H} 2$ any rotation

$C_{2}{ }^{2}=E=360$ (original)
One operation
equivalent orientation
Possible no. of

symmetry operation | $c_{3} \rightarrow C_{3}{ }^{\prime}(120)$, |
| :--- |
| $c_{3}{ }^{2}(240), C_{3}{ }^{3}(360)$ (orig.) |

$C_{n}$ axis is $n-1$, $n$th is the original

Two operations

## Lets revise

Order of axis :-
$\mathrm{n}=360$ / $\theta$,

number of equivalent structure ingluding original
Principal Axis :- highest order
Subsidiary axis:- Allother axis other than principle
e.g. $\quad B F 3, C 3-3 C 2$

NH3-1C3
CCl4, 4C3-3C2
PCI5, 1C3-3C2
N2O- Nitrous oxide
$\mathrm{N} \equiv \mathrm{N} \longrightarrow \mathrm{O}$ Laughing gas



$\mathfrak{m} \overrightarrow{\mathbf{A}^{*}}$

# CENTER OF  Center 

## You Can Use Some Graphs



## Center of inversion



Reflection
Center
Equivalent atom


Inversion operation
Only one center of symmetry in one molecule

$$
\mathrm{i}^{2}=\mathrm{E} \text {, one } \mathrm{i} \text {, }
$$

2nd i will give E, original
orientation


## Center of Symmetry in Methane



| B2 |
| :--- |
| 0.6 |

## METHANE $\mathrm{CH}_{4}$






- Reflection of object through a mirror plane: Objects in the plane are reflected onto themselves, objects on either side of the plane are reflected to opposite side.



## Types of Plane of Symmetry



## Vertical Plane of Symmetry $\sigma_{v}$

Plane passing through principal axis
Eg. Ammonia $\mathrm{NH}_{3}$

$\stackrel{5}{5 \times A_{n}}$

\&

$$
\begin{aligned}
& 0
\end{aligned}
$$

## Horizontal Plane of Symmetry $\sigma_{h}$

- Plane perpendicular to principal axis
- Only one $\sigma_{h}$ but more $\sigma_{v}$
- $\sigma_{h}$ present i.e. $\sigma_{v}$ present
- $\sigma_{v}$ present $\sigma_{h}$ may be /may not be present
- $\sigma_{v}$ and $\sigma_{h}$ are always perpendicular



## Dihedral plane/diagonal plane of symmetry

## $\sigma_{d}$

- Includes principal axis, bisects two $\mathrm{C}_{2}$ and passes through minimum number of atoms
- $\sigma_{d}$ always perpendicular to $\sigma_{h}$


Dihedral vs. Vertical Mirror Planes Rule of Thumb



- Vertical plane of symmetry
- Includes principal axis
- More than one $\sigma_{v}$
- Square planner
- $4 \sigma_{v}$ but $2 \sigma_{d}$
- Thus, $2 \sigma_{v}$


## Difference



## SOME EXAMPLES

- $\mathrm{H}_{2} \mathrm{O} \quad \mathrm{C}_{2}$
- $\mathrm{PtCl}_{4}^{-2} \quad \mathrm{IC}_{4} 4 \mathrm{C}_{2}$
- $\mathrm{PtCl}_{6} 3 \mathrm{C}_{4} 4 \mathrm{C}_{3} 6 \mathrm{C}_{2}$
- $\mathrm{NOCl} \mathrm{C}_{1}=E$
- $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{2}$ (trans)
- $\mathrm{C}_{2} \mathrm{Cl}_{4}$
- $\mathrm{XeOF}_{4}$


## IMPROPER ROTATION AXIS - $S_{n}$

- Two step operation
- Rotate $360^{\circ} / n$ followed by reflection in a mirror plane perpendicular to axis of rotation. All Planar Molecules have $S_{n}$ Rotation - Reflection (Imnroner Rotation) Axis S. It is an imaginary axis through which if a species/molecule is rotated about certain degree followed by a reflection through a plan perpendicular to rotation axis giving an equivalent configuration to original.

- $S_{n}{ }^{k}$
- $n=360 / \theta$,
- $n=$ order of axis(improper axis)
- $K=$ distinct operations
- e.g. S6, follows 6 distinct operations
- $S_{6}^{1}, S_{6},{ }^{2} S_{6}^{3}, S_{6}^{4}, S_{6}^{5}, S_{6}^{6}$
- $C^{n}=E_{1}$
- $C_{n}{ }^{n}=E_{\text {, }}$
-But $S_{n}{ }^{2 n}=E, n=$ odd
$-S_{n}{ }^{n}=E, n=$ even
- Axis is of odd no. $C_{n}{ }^{n}=E$, but $S_{n}{ }^{n}=\sigma_{n}$ not $E$


## Trans dichloroethylene $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{2}$



| $c_{n}$ | $S_{n}$ |
| :---: | :---: |
| $C_{n}$ proper axis of rotation | $S_{n}$ Shoenflie symbol of improper axis of rotation |
|  | Anticlock wise rotation followed by reflection (perpendicular plane) Equivalent orientation <br> Degree of rotation decides order of improper rotation |
| $C_{n}{ }^{n}=E$ | $\begin{array}{ll} S_{k}{ }^{2}=E, & k \text { is even } \\ S_{n}^{22 k}=E, & k \text { is odd } \end{array}$ |

## EXAMPLES

- $\mathrm{C}_{2}{ }^{2}=\mathrm{E}$
$\mathrm{H}_{2} \mathrm{O}$

$$
\mathrm{n}=2 \quad n=\frac{360}{\theta}=180
$$



- $\mathrm{C}_{3}{ }^{3}=\mathrm{E}$
$\mathrm{BF}_{3}$

$$
\mathrm{n}=3 \quad n=\frac{360}{\theta}=120
$$



ALLENE

## $G$ Lad

## BORIC ACID, $\mathrm{B}(\mathrm{OH})_{3}$


$B F_{3}$


## METHANE



## AMMONIA

## G LGADAV

Point Groupjadav

## POINT GROUP

- Collection of specific symmetry elements and operations for a certain molecular structure
- A Group is a collection of elements that are interrelated according to certain rules.
- In order for any set of elements to form a group, the following conditions or rules must be satisfied:
I. Law of Identity

One element in the group must commute with all other and leave them unchanged.
i.e. the group must include the identity $E$

$$
X E=X
$$

2. Law of inverse (Reciprocality)

Every element must have reciprocal, which is also an element of the Group. If $R$ is a reciprocal of the element $S$ then $R . S=E$
Eg. $C_{3}{ }^{-1} \times C_{3}{ }^{\prime}=E$
$\mathrm{BF}_{3}$

3. Law of Closure

The combination of two elements in the group must give an element of the group. $A \times B=C \quad$ ( $B$ operation First) $B F_{3} \quad A=C_{3} \quad B=\sigma_{v a}$ Then $C=$ ? $C_{3} \times \sigma_{V a}=\sigma_{V c}$

4. Law of multiplication (Commutative Law)

For any point group if $A$ and $B$ are the possible symmetry operations and if $A \times B=B \times A$, it means it obeys the law of multiplication.
Commutative Law: in algebra, $x \times y=y \times x$
$A B$ or $B A$
But in group theory, the commutative law does not in general hold.
$A B$ may be equal to $C$ But, $B A=D$, and $C \neq D$

- There are some groups in which combination is commutative and such groups are called Abelian Groups
- Non - Commutative $\rightarrow$ Non Abelian group
* $A \times B=B \times A \rightarrow$ Abelian
* $A \times B \neq B \times A \rightarrow$ Non Abelian

$$
\circ \mathrm{H}_{2} \mathrm{O}: A \times B=C_{2} \times \sigma_{v}
$$


5. LAW OF ASSOCIATION

- The association law of multiplication must hold (obey).
- If $A, B, C$ are possible symmetry elements
$-A(B C)=\left(\begin{array}{ll}-A B) C \\ -B C=S \\ -A B=R & R C\end{array}\right] \quad$ Same obeys association law
- Prove that:
$-(A B) C=A(B C)$
- $E g . B F_{3}$
- $A=C_{3} \quad B=\sigma_{1} \quad C=\sigma_{2}$
- $A \times B=R$
- $R=\sigma_{V 3}$



- RHS $=A(B C)$
- First B C operation than A operation
- In B C first C operation Than B operation
$-C_{3}\left(\begin{array}{lll}\sigma_{v 1} & x & \sigma_{\mathrm{v} 2}\end{array}\right)$


Thus LHS = RHS, in BF3 the law of association Obeys

Prove that : in $\mathrm{NH}_{3}$ $C_{3} \times \sigma_{v 1} \neq \sigma_{v 1} \times C_{3}$

- $\mathrm{NH}_{3}$ is non planner, I $\mathrm{C}_{3}$ and $3 \sigma_{v}$


RHS $=\sigma_{v 1} \times C_{3}$


## $C_{n}{ }^{k}$ find $n$ and $k$, for $1140^{\circ}$ rotation

- How to find $\theta$ (minimum angle of rotation)?
- $360 \times 3=1080$
- Thus $\theta=1140-1080=60$
- $n=360 / \theta=360 / 60=6$ A
- $C_{n}=C_{6}$
- Now, $k=\frac{\text { totalangleofrotation }}{\text { minimumangleofrotation }}=\frac{1140}{60}=19$
- $n=6$ and $k=19$
- $C_{n}{ }^{k}=C_{6}{ }^{19}$

Rules for the determination of point group

1. Check the presence of principle rotational axis

- If absent P.G. C, $C_{s}$ or $C_{i}$ which depends on the presence of $i$ and $\sigma_{h}$

If $C_{n}$ absent

2. If principle rotational axis present P.G. $C_{n}$
3. Check presence of $C_{2}$ axis

- If $n C_{2} \perp C_{n}$ then $D_{n}$

4. Presence of symmetrical plane $\sigma_{v} n \sigma_{h} n \sigma_{d}$
5. If only $n \sigma_{v}, C_{n v}$
II. $n \sigma_{v}, \sigma_{h}, P G C_{n h}$
III. $\sigma_{d}$ present then always $n C_{2}+C_{n}, P G$. $D_{n d}$
IV. $n C_{2} \perp C_{n}, \sigma_{d}$ absent, $\sigma_{n}$ present, PG. $D_{n n}$
V. If molecule possess specific shape $P G$ will be special
6. Tetrahedral shape $=T d$
7. $\quad$ Octahedral shape $=$ oh
8. If molecule is linear check center of symmetry

- Inversion present $=C_{\text {con }}$
- Inversion Absent $=C_{\omega v}$
- Molecules that only have Cn proper axis of rotation with ( $n-1$ ) distinct symmetry



## mULTIPLICATION TABLE




| $C_{2} V$ | $E$ | $C_{2}$ | $\sigma_{V 1}$ | $\sigma_{V 2}$ |
| :---: | :---: | :---: | :---: | :---: |
| $E$ | $E$ | $C_{2}$ | $\sigma_{V 1}$ | $\sigma_{V 2}$ |
| $C_{2}$ | $C_{2}$ | $E$ | $\sigma_{V 2}$ | $\sigma_{V 1}$ |
| $\sigma_{V 1}$ | $\sigma_{V 1}$ | $\sigma_{V 2}$ | $E$ | $C_{2}$ |
| $\sigma_{V 2}$ | $\sigma_{V 2}$ | $\sigma_{V 1}$ | $C_{2}$ | $E$ |

## G L JADAV

## MULTIPLICATION TABLE

* Trans dichloro ethylene
- $C_{2} h$ $E_{2}$
$C_{2}$


| $\mathrm{C}_{2} \mathrm{~V}$ | E | $\mathrm{C}_{2}$ | $\sigma_{h}$ | i |
| :---: | :---: | :---: | :---: | :---: |
| E | $E$ | $C_{2}$ | $\sigma_{h}$ | $i$ |
| $\mathrm{C}_{2}$ | $C_{2}$ | $E$ | $i$ | $\sigma_{h}$ |
| $\sigma_{h}$ | $\sigma_{h}$ | $i$ | $E$ | $C_{2}$ |
| i | $i$ | $\sigma_{h}$ | $C_{2}$ | $E$ |

## G L JADAV

## MULTIPLICATION TABLE

- $C_{3} \mathrm{~V}$


| $\mathrm{C}_{3} \mathrm{~V}$ | E | $\mathrm{C}_{3}$ | $\mathrm{C}_{3}{ }^{-1}$ | $\mathrm{O}_{\mathrm{V} 1}$ | $\mathrm{O}_{\mathrm{V} 2}$ | $\sigma_{\text {V3 }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| E | $E$ | $C_{3}$ | $\mathrm{C}_{3}{ }^{-1}$ | $\sigma_{v 1}$ | $\sigma_{\mathrm{V} 2}$ | $\sigma_{\text {V3 }}$ |
| $\mathrm{C}_{3}$ | $C_{3}$ | $\mathrm{C}_{3}{ }^{-1}$ | $E$ | $\sigma_{\text {v3 }}$ | $\sigma_{v 1}$ | $\sigma_{\text {V2 }}$ |
| $\mathrm{C}_{3}{ }^{-1}$ $\mathrm{o}_{\mathrm{V} 1}$ | $C_{3}{ }^{-1}$ $\sigma_{v i}$ | $\begin{gathered} \boldsymbol{E} \\ \boldsymbol{\sigma}_{\mathrm{V} 2} \end{gathered}$ |  |  |  | $\begin{aligned} & \sigma_{\mathrm{vI}} \\ & c_{3}{ }^{-1} \end{aligned}$ |
| $\mathrm{\sigma}_{\mathrm{V} 2}$ | $\boldsymbol{\sigma}^{\text {V } 2}$ | $\sigma_{\text {v3 }}$ | $\sigma_{V I}$ | $C_{3}{ }^{-1}$ | $E$ | $C_{3}$ |
| $\sigma_{\text {v3 }}$ | $\sigma_{\text {v3 }}$ | $\boldsymbol{\sigma}_{V 1}$ | $\sigma_{\mathrm{V} 2}$ | $C_{3}$ | $C_{3}{ }^{-1}$ | $E$ |



